Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part II: Column model simulations

AMS Citation:
Grim, J. A., G. M. McFarquhar, R. M. Rauber, A. M. Smith, and B. F. Jewett, 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part II: Column model simulations. Monthly Weather Review, 137, 1186-1205, doi:10.1175/2008MWR2505.1.
Date:2009-04-01
Resource Type:article
Title:Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part II: Column model simulations
Abstract: This study employed a nondynamic microphysical column model to evaluate the degree to which the microphysical processes of sublimation, melting, and evaporation alone can explain the evolution of the relative humidity (RH) and latent cooling profiles within the trailing stratiform region of mesoscale convective systems observed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). Simulations revealed that observations of a sharp change in the profile of RH, from saturated air with respect to ice above the melting layer to subsaturated air with respect to water below, developed in response to the rapid increase in hydrometeor fall speeds from 1–2 m s−1 for ice to 2–11 m s−1 for rain. However, at certain times and locations, such as the first spiral descent on 29 June 2003 within the notch of lower reflectivity, the air may remain subsaturated for temperatures (T) < 0°C. Sufficiently strong downdrafts above the melting level, such as the 1–3 m s−1 downdrafts observed in the notch of lower reflectivity on 29 June, could enable this state of sustained subsaturation. Sensitivity tests, where the hydrometeor size distributions and upstream RH profiles were varied within the range of BAMEX observations, revealed that the sharp contrast in the RH field across the melting layer always developed. The simulations also revealed that latent cooling from sublimation and melting resulted in the strongest cooling at altitudes within and above the melting layer for locations where hydrometeors did not reach the ground, such as within the rear anvil region, and where sustained subsaturated air is present for T < 0°C, such as is observed within downdrafts. Within the enhanced stratiform rain region, the air is typically at or near saturation for T < 0°C, whereas it is typically subsaturated for T > 0°C; thus, evaporation and melting result in the primary cooling in this region. The implications of these results for the descent of the rear inflow jet across the trailing stratiform region are discussed.
Peer Review:Refereed
Copyright Information:Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
OpenSky citable URL: ark:/85065/d7qf8tzn
Publisher's Version: 10.1175/2008MWR2505.1
Author(s):
  • Joseph Grim - NCAR/UCAR
  • Greg McFarquhar
  • Robert Rauber
  • Andrea Smith
  • Brian Jewett
  • Random Profile

    CLIVAR PROJ DIR

    Recent & Upcoming Visitors