A hybrid NWP-analog ensemble

AMS Citation:
Eckel, F. A., and L. Delle Monache, 2016: A hybrid NWP-analog ensemble. Monthly Weather Review, 144, 897-911, doi:10.1175/MWR-D-15-0096.1.
Date:2016-03-01
Resource Type:article
Title:A hybrid NWP-analog ensemble
Abstract: An analog ensemble (AnEn) is constructed by first matching up the current forecast from a numerical weather prediction (NWP) model with similar past forecasts. The verifying observation from each match is then used as an ensemble member. For at least some applications, the advantages of AnEn over an NWP ensemble (multiple real-time model runs) may include higher efficiency, avoidance of initial condition and model perturbation challenges, and little or no need for postprocessing calibration. While AnEn can capture flow-dependent error growth, it may miss aspects of error growth that can be represented dynamically by the multiple real-time model runs of an NWP ensemble. To combine the strengths of the AnEn and NWP ensemble approaches, a hybrid ensemble (HyEn) is constructed by finding m analogs for each member of a small n-member NWP ensemble, to produce a total of m × n members. Forecast skill is compared between the AnEn, HyEn, and an NWP ensemble calibrated using logistic regression. The HyEn outperforms the other approaches for probabilistic 2-m temperature forecasts yet underperforms for 10-m wind speed. The mixed results reveal a dependence on the intrinsic skill of the NWP members employed. In this study, the NWP ensemble is underspread for both 2-m temperature and 10-m winds, yet displays some ability to represent flow-dependent error for the former and not the latter. Thus, the HyEn is a promising approach for efficient generation of high-quality probabilistic forecasts, but requires use of a small, and at least partially functional, NWP ensemble.
Peer Review:Refereed
Copyright Information:Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
OpenSky citable URL: ark:/85065/d7cc1284
Publisher's Version: 10.1175/MWR-D-15-0096.1
Author(s):
  • F. Eckel
  • Luca Delle Monache - NCAR/UCAR
  • Random Profile

    PROJ SCIENTIST I

    Recent & Upcoming Visitors