Upstream-propagating wave modes in moist and dry flow over topography

AMS Citation:
Keller, T. L., R. Rotunno, M. Steiner, and R. D. Sharman, 2012: Upstream-propagating wave modes in moist and dry flow over topography. Journal of the Atmospheric Sciences, 69, 3060-3076, doi:10.1175/JAS-D-12-06.1.
Date:2012-10-01
Resource Type:article
Title:Upstream-propagating wave modes in moist and dry flow over topography
Abstract: Previous studies have observed upstream-propagating modes in two-dimensional numerical simulations of idealized flow over topography with moist, nearly neutral conditions in the troposphere, topped by a stable stratosphere. The generation and propagation mechanisms for these modes were attributed to localized and dramatic changes in stability induced by the desaturation of the flow impinging on the mountain. In the present paper it is shown that these modes are transient upstream-propagating gravity waves, which are a fundamental feature of both moist and dry flow over topography of a two-layer troposphere–stratosphere atmospheric profile impulsively started from rest. The mode selection and propagation speeds of these transient waves are highly dependent on the tropospheric stability, as well as the wind speed and tropopause depth. In the moist case these modes appear to propagate according to an effective static stability that is intermediate to the normal dry stability and the lower moist stability. Comparisons with the linear, time-dependent, hydrostatic analytic solution show that these modes are similar to the transients observed in flow of a constant wind and stability layer over topography with a rigid upper boundary.
Peer Review:Refereed
Copyright Information:Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
OpenSky citable URL: ark:/85065/d76974bw
Publisher's Version: 10.1175/JAS-D-12-06.1
Author(s):
  • Teddie Keller - NCAR/UCAR
  • Richard Rotunno - NCAR/UCAR
  • Matthias Steiner - NCAR/UCAR
  • Robert Sharman - NCAR/UCAR
  • Random Profile

    SCIENTIST III

    Recent & Upcoming Visitors