Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing

AMS Citation:
Bera, S., T. V. Prabha, and W. W. Grabowski, 2016: Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing. Journal of Geophysical Research: Atmospheres, 121, 9767-9788, doi:10.1002/2016JD025133.
Date:2016-08-27
Resource Type:article
Title:Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing
Abstract: Microphysical characteristics of premonsoon and monsoon deep cumuli over India observed by an instrumented aircraft are contrasted focusing on influences of environmental conditions and entrainment-mixing processes. Differences in the lower tropospheric temperature and moisture profiles lead to contrasting undiluted cloud buoyancy profiles around the cloud base, larger in the premonsoon case. It is argued that this affects the variation of the mean and maximum cloud droplet number concentrations and the droplet radius within the lowest several hundred meters above the cloud base. The conserved-variable thermodynamic diagram analysis suggests that entrained parcels originate from levels close to the observational level. Mixing processes and their impact on the droplet size distribution (DSD) are investigated contrasting 1 Hz and 10 Hz observations. Inhomogeneous-type mixing, likely because of unresolved small-scale structures associated with active turbulent stirring, is noted at cloud edge volumes where dilution is significant and DSDs shift toward smaller sizes with reduced droplet number concentrations due to complete evaporation of smaller droplets and partial evaporation of larger droplets. DSDs within cloud core volumes suggest that the largest droplets are formed in the least diluted volumes where raindrops can form at higher levels; no superadiabatic droplet growth is observed. The typical diluted parcel size is approximately 100-200 m for cloud edge volumes, and it is much smaller, 10–20 m, for cloud core volumes. Time scale analysis indicates the possibility of inhomogeneous type mixing within the diluted cloud edge volumes at spatial scales of a 100 m or more.
Peer Review:Refereed
Copyright Information:Copyright 2016 American Geophysical Union.
OpenSky citable URL: ark:/85065/d7mp54zq
Publisher's Version: 10.1002/2016JD025133
Author(s):
  • Sudarsan Bera
  • Thara V. Prabha
  • Wojciech W. Grabowski - NCAR/UCAR
  • Random Profile

    TECH INVENTORY COORD

    Recent & Upcoming Visitors