Global precipitation extremes associated with diurnally-varying low-level jets

AMS Citation:
Monaghan, A. J., D. L. Rife, J. Pinto, C. A. Davis, and J. R. Hannan, 2010: Global precipitation extremes associated with diurnally-varying low-level jets. Journal of Climate, 23, 5065-5085, doi:10.1175/2010JCLI3515.1.
Date:2010-10-26
Resource Type:article
Title:Global precipitation extremes associated with diurnally-varying low-level jets
Abstract: Extreme rainfall events have important societal impacts: for example, by causing flooding, replenishing reservoirs, and affecting agricultural yields. Previous literature has documented linkages between rainfall extremes and nocturnal low-level jets (NLLJs) over the Great Plains of North America and the La Plata River basin of South America. In this study, the authors utilize a 21-yr, hourly global 40-km reanalysis based on the fifth-generation Pennsylvania State University-NCAR Mesoscale Model (MM5) to examine whether NLLJ-rainfall linkages are common elsewhere on the earth. The reanalysis is uniquely suited for the task because of its comparatively high spatial and temporal resolution and because a companion paper demonstrated that it realistically simulates the vertical, horizontal, and diurnal structure of the winds in well-known NLLJ regions. The companion paper employed the reanalysis to identify and describe numerous NLLJs across the planet, including several previously unknown NLLJs. The authors demonstrate here that the reanalysis reasonably simulates the diurnal cycle, extremes, and spatial structure of rainfall globally compared to satellite-based precipitation datasets and therefore that it is suitable for examining NLLJ-rainfall linkages. A statistical approach is then introduced to categorize nocturnal precipitation extremes as a function of the NLLJ magnitude, wind direction, and wind frequency for January and July. Statistically significant relationships between NLLJs and nocturnal precipitation extremes exist in at least 10 widely disparate regions around the world, some of which are well known and others that have been undocumented until now. The regions include the U.S. Great Plains, Tibet, northwest China, India, Southeast Asia, southeast China, Argentina, Namibia, Botswana, and Ethiopia. Recent studies have recorded widespread changes in the amplitudes of near-surface diurnal heating cycles that in turn play key roles in driving NLLJs. It will thus be important for future work to address how rainfall extremes may be impacted if trends in diurnal cycles cause the position, magnitude, and frequency of NLLJs to change.
Peer Review:Refereed
Copyright Information:Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
OpenSky citable URL: ark:/85065/d71j9c2t
Publisher's Version: 10.1175/2010JCLI3515.1
Author(s):
  • Andrew Monaghan - NCAR/UCAR
  • Daran Rife - NCAR/UCAR
  • James Pinto - NCAR/UCAR
  • Christopher Davis - NCAR/UCAR
  • John Hannan
  • Random Profile

    SENIOR SCIENTIST

    Recent & Upcoming Visitors