Evaluating medium-range tropical cyclone forecasts in uniform- and variable-resolution global models

AMS Citation:
Davis, C. A., D. A. Ahijevych, W. Wang, and W. C. Skamarock, 2016: Evaluating medium-range tropical cyclone forecasts in uniform- and variable-resolution global models. Monthly Weather Review, 144, 4141-4160, doi:10.1175/MWR-D-16-0021.1.
Resource Type:article
Title:Evaluating medium-range tropical cyclone forecasts in uniform- and variable-resolution global models
Abstract: An evaluation of medium-range forecasts of tropical cyclones (TCs) is performed, covering the eastern North Pacific basin during the period 1 August–3 November 2014. Real-time forecasts from the Model for Prediction Across Scales (MPAS) and operational forecasts from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) are evaluated. A new TC-verification method is introduced that treats TC tracks as objects. The method identifies matching pairs of forecast and observed tracks, missed and false alarm tracks, and derives statistics using a multicategory contingency table methodology. The formalism includes track, intensity, and genesis. Two configurations of MPAS, a uniform 15-km mesh and a variable-resolution mesh transitioning from 60 km globally to 15 km over the eastern Pacific, are compared with each other and with the operational GFS. The two configurations of MPAS reveal highly similar forecast skill and biases through at least day 7. This result supports the effectiveness of TC prediction using variable resolution. Both MPAS and the GFS suffer from biases in predictions of genesis at longer time ranges; MPAS produces too many storms whereas the GFS produces too few. MPAS better discriminates hurricanes than does the GFS, but the false alarms in MPAS lower overall forecast skill in the medium range relative to GFS. The biases in MPAS forecasts are traced to errors in the parameterization of shallow convection south of the equator and the resulting erroneous invigoration of the ITCZ over the eastern North Pacific.
Peer Review:Refereed
Copyright Information:Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
OpenSky citable URL: ark:/85065/d7668fvp
Publisher's Version: 10.1175/MWR-D-16-0021.1
  • Christopher A. Davis - NCAR/UCAR
  • David A. Ahijevych - NCAR/UCAR
  • Wei Wang - NCAR/UCAR
  • William C. Skamarock - NCAR/UCAR
  • Random Profile


    Recent & Upcoming Visitors