Object-based verification of precipitation forecasts, Part I: Methodology and application of mesoscale rain areas

AMS Citation:
Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts, Part I: Methodology and application of mesoscale rain areas. Monthly Weather Review, 134, 1772-1784, doi:10.1175/MWR3145.1.
Date:2006-07-01
Resource Type:article
Title:Object-based verification of precipitation forecasts, Part I: Methodology and application of mesoscale rain areas
Abstract: A recently developed method of defining rain areas for the purpose of verifying precipitation produced by numerical weather prediction models is described. Precipitation objects are defined in both forecasts and observations based on a convolution (smoothing) and thresholding procedure. In an application of the new verification approach, the forecasts produced by the Weather Research and Forecasting (WRF) model are evaluated on a 22-km grid covering the continental United States during July-August 2001. Observed rainfall is derived from the stage-IV product from NCEP on a 4-km grid (averaged to a 22-km grid). It is found that the WRF produces too many large rain areas, and the spatial and temporal distribution of the rain areas reveals regional underestimates of the diurnal cycle in rain-area occurrence frequency. Objects in the two datasets are then matched according to the separation distance of their centroids. Overall, WRF rain errors exhibit no large biases in location, but do suffer from a positive size bias that maximizes during the later afternoon. This coincides with an excessive narrowing of the rainfall intensity range, consistent with the dominance of parameterized convection. Finally, matching ability has a strong dependence on object size and is interpreted as the influence of relatively predictable synoptic-scale systems on the larger areas.
Peer Review:Refereed
Copyright Information:Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
OpenSky citable URL: ark:/85065/d7m61kdk
Publisher's Version: 10.1175/MWR3145.1
Author(s):
  • Christopher Davis - NCAR/UCAR
  • Barbara Brown - NCAR/UCAR
  • Randy Bullock - NCAR/UCAR
  • Random Profile

    SCIENTIST III

    Recent & Upcoming Visitors