Dependence of the ice water content and snowfall rate on temperature, globally: Comparison of in situ observations, satellite active remote sensing retrievals, and global climate model simulations

AMS Citation:
Heymsfield, A., M. Krämer, N. B. Wood, A. Gettelman, P. R. Field, and G. Liu, 2017: Dependence of the ice water content and snowfall rate on temperature, globally: Comparison of in situ observations, satellite active remote sensing retrievals, and global climate model simulations. Journal of Applied Meteorology and Climatology, 56, 189-215, doi:10.1175/JAMC-D-16-0230.1.
Date:2017-01-01
Resource Type:article
Title:Dependence of the ice water content and snowfall rate on temperature, globally: Comparison of in situ observations, satellite active remote sensing retrievals, and global climate model simulations
Abstract: Cloud ice microphysical properties measured or estimated from in situ aircraft observations are compared with global climate models and satellite active remote sensor retrievals. Two large datasets, with direct measurements of the ice water content (IWC) and encompassing data from polar to tropical regions, are combined to yield a large database of in situ measurements. The intention of this study is to identify strengths and weaknesses of the various methods used to derive ice cloud microphysical properties. The in situ data are measured with total water hygrometers, condensed water probes, and particle spectrometers. Data from polar, midlatitude, and tropical locations are included. The satellite data are retrieved from CloudSat/CALIPSO [the CloudSat Ice Cloud Property Product (2C-ICE) and 2C-SNOW-PROFILE] and Global Precipitation Measurement (GPM) Level2A. Although the 2CICE retrieval is for IWC, a method to use the IWC to get snowfall rates S is developed. The GPM retrievals are for snowfall rate only. Model results are derived using the Community Atmosphere Model (CAM5) and the Met Office Unified Model [Global Atmosphere 7 (GA7)]. The retrievals and model results are related to the in situ observations using temperature and are partitioned by geographical region. Specific variables compared between the in situ observations, models, and retrievals are the IWCand S. Satellite-retrieved IWCs are reasonably close in value to the in situ observations, whereas the models' values are relatively low by comparison. Differences between the in situ IWCs and those from the other methods are compounded when S is considered, leading to model snowfall rates that are considerably lower than those derived from the in situ data. Anomalous trends with temperature are noted in some instances.
Peer Review:Refereed
Copyright Information:Copyright YYYY American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
OpenSky citable URL: ark:/85065/d7639rjq
Publisher's Version: 10.1175/JAMC-D-16-0230.1
Author(s):
  • Andrew Heymsfield - NCAR/UCAR
  • Martina Krämer
  • Norman B. Wood
  • Andrew Gettelman - NCAR/UCAR
  • Paul R. Field
  • Guosheng Liu
  • Random Profile

    ASSOC SCIENTIST III

    Recent & Upcoming Visitors