Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics

AMS Citation:
Zhang, F., N. Bei, R. Rotunno, C. M. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. Journal of the Atmospheric Sciences, 64, 3579-3594, doi:10.1175/JAS4028.1.
Date:2007-10-01
Resource Type:article
Title:Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics
Abstract: A recent study examined the predictability of an idealized baroclinic wave amplifying in a conditionally unstable atmosphere through numerical simulations with parameterized moist convection. It was demonstrated that with the effect of moisture included, the error starting from small random noise is characterized by upscale growth in the short-term (0-36 h) forecast of a growing synoptic-scale disturbance. The current study seeks to explore further the mesoscale error-growth dynamics in idealized moist baroclinic waves through convection-permitting experiments with model grid increments down to 3.3 km. These experiments suggest the following three-stage error-growth model: in the initial stage, the errors grow from small-scale convective instability and then quickly [O(1 h)] saturate at the convective scales. In the second stage, the character of the errors changes from that of convective-scale unbalanced motions to one more closely related to large-scale balanced motions. That is, some of the error from convective scales is retained in the balanced motions, while the rest is radiated away in the form of gravity waves. In the final stage, the large-scale (balanced) components of the errors grow with the background baroclinic instability. Through examination of the error-energy budget, it is found that buoyancy production due mostly to moist convection is comparable to shear production (nonlinear velocity advection). It is found that turning off latent heating not only dramatically decreases buoyancy production, but also reduces shear production to less than 20% of its original amplitude.
Peer Review:Refereed
Copyright Information:Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
OpenSky citable URL: ark:/85065/d7tt4r65
Publisher's Version: 10.1175/JAS4028.1
Author(s):
  • Fuqing Zhang
  • Naifang Bei
  • Richard Rotunno - NCAR/UCAR
  • Chris Snyder - NCAR/UCAR
  • C. Epifanio
  • Random Profile

    PROJ SCIENTIST II

    Recent & Upcoming Visitors