K. K. Chandrakar, H. Morrison, and M. Witte. Evolution of droplet size distributions during the transition of an ultraclean stratocumulus cloud system to open cell structure: AN LES INVESTIGATION USING LAGRANGIAN MICROPHYSICS. Geophysical Research Letters, 2022, e2022GL100511. https://doi.org/10.1029/2022GL100511
K. K. Chandrakar, H. Morrison, W. W. Grabowski, G. H. Bryan, and R. A. Shaw. Supersaturation Variability from Scalar Mixing: Evaluation of a New Subgrid-Scale Model Using Direct Numerical Simulations of Turbulent Rayleigh–Bénard Convection. Journal of the Atmospheric Sciences, 79(4), 1191-1210, 2022. https://doi.org/10.1175/JAS-D-21-0250.1
H. Morrison, P. Lawson, and K. K. Chandrakar. Observed and bin model simulated evolution of drop size distributions in high-based cumulus congestus over the United Arab Emirates. Journal of Geophysical Research: Atmospheres, 127, e2021JD035711, 2022. https://doi.org/10.1029/2021JD035711
K. K. Chandrakar, H. Morrison, W. W. Grabowski, and G. H. Bryan. Comparison of Lagrangian super-droplet and Eulerian double-moment spectral microphysics schemes in large-eddy simulations of an isolated cumulus-congestus cloud. Journal of the Atmospheric Sciences, 79(7), 1887-1910, 2021. https://doi.org/10.1175/JAS-D-21-0138.1
H. Morrison, J. Peters, K. K. Chandrakar, and S. Sherwood. Influences of environmental relative humidity and horizontal scale of sub-cloud ascent on deep convective initiation, Journal of the Atmospheric Sciences, 79(2), 337-359. https://doi.org/10.1175/JAS-D-21-0056.1
K. K. Chandrakar, W. W. Grabowski, H. Morrison, and G. H. Bryan. Entrainment-mixing and evolution of droplet size distribution in a cumulus cloud: an investigation using Lagrangian microphysics with a sub-grid-scale model. Journal of the Atmospheric Sciences, 78(9):2983–3005, 2021. https://doi.org/10.1175/JAS-D-20-0281.1
K. K. Chandrakar and R. A. Shaw. Chapter-18: In-situ and laboratory measurements of cloud microphysical properties. Fast Physics in Large Scale Atmospheric Models: Parameterization, Evaluation, and Observation (AGU BOOK), 2020 (in press).
K. K. Chandrakar, W. Cantrell, S. Krueger, R. A. Shaw, and S. Wunsch. Supersaturation fluctuations in moist turbulent Rayleigh-Bénard convection: a two-scalar transport problem. Journal of Fluid Mechanics, 884, A19. https://doi.org/10.1017/jfm.2019.895.
K. K. Chandrakar, I. Saito, F. Yang, W. Cantrell, T. Gotoh, and R. A. Shaw. Droplet size distributions in turbulent clouds: experimental evaluation of theoretical distributions. Quarterly Journal of the Royal Meteorological Society 2019; 1– 22. https://doi.org/10.1002/qj.3692
K. K. Chandrakar, "Aerosol-Cloud Interactions in Turbulent Clouds: A Combined Cloud Chamber and Theoretical Study", Open Access Dissertation, Michigan Technological University, 2019. https://doi.org/10.37099/mtu.dc.etdr/868.
J. Bhandari, S. China, K. K. Chandrakar, G. Kinney, W. Cantrell, R. A. Shaw, L. R. Mazzoleni, G. Girotto, N. Sharma, K. Gorkowski, et al. Extensive soot compaction by cloud processing from laboratory and field observations. Scientific reports, 9(1):1–12, 2019. https://doi.org/10.1038/s41598-019-48143-y.
N. Desai, K. K. Chandrakar, G. Kinney, W. Cantrell, and R. A. Shaw. Aerosol mediated glaciation of mixedłphase clouds: Steady state laboratory measurements. Geophysical Research Letters, 2019. https://doi.org/10.1029/2019GL083503.
K. K. Chandrakar, W. Cantrell, A. B. Kostinski, and R. A. Shaw. Dispersion aerosol indirect effect in turbulent clouds: Laboratory measurements of effective radius. Geophysical Research Letters, 2018. https://doi.org/10.1029/2018GL079194.
K. K. Chandrakar, W. Cantrell, and R. A. Shaw. Influence of turbulent fluctuations on cloud droplet size dispersion and aerosol indirect effects. Journal of the Atmospheric Sciences, 75(9):3191–3209, 2018. https://doi.org/10.1175/JAS-D-18-0006.1.
D. Niedermeier, K. Chang, W. Cantrell, K. K. Chandrakar, D. Ciochetto, and R. A. Shaw. Observation of a link between energy dissipation rate and oscillation frequency of the large-scale circulation in dry and moist rayleigh-bénard turbulence. Physical Review Fluids, 3(8):083501, 2018. https://doi.org/10.1103/PhysRevFluids.3.083501.
N. Desai, K. K. Chandrakar, K. Chang, W. Cantrell, and R. A. Shaw. Influence of microphysical variability on stochastic condensation in a turbulent laboratory cloud. Journal of the Atmospheric Sciences, 75(1):189–201, 2018. https://doi.org/10.1175/JAS-D-17-0158.1.
K. K. Chandrakar, W. Cantrell, D. Ciochetto, S. Karki, G. Kinney, and R. A. Shaw. Aerosol removal and cloud collapse accelerated by supersaturation fluctuations in turbulence. Geophysical Research Letters, 44(9):4359–4367, 2017. https://doi.org/10.1002/2017GL072762.
K. K. Chandrakar, W. Cantrell, K. Chang, D. Ciochetto, D. Niedermeier, M. Ovchinnikov, R. A. Shaw, and F. Yang. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions. Proc. Nat. Acad. Sci., 113:14243–14248, 2016. https://doi.org/10.1073/pnas.1612686113.
K. Chang, J. Bench, M. Brege, W. Cantrell, K. K. Chandrakar, D. Ciochetto, C. Mazzoleni, L. R. Mazzoleni, D. Niedermeier, and R. A. Shaw. A laboratory facility to study gas–aerosol–cloud interactions in a turbulent environment: The π chamber. Bulletin of the American Meteorological Society, 97(12):2343–2358, 2016. https://doi.org/10.1175/BAMS-D-15-00203.1.