-
Spuler S., M. Linne, A. Sappey, S. Snyder, 2000: Development of a cavity ringdown laser absorption spectrometer for detection of trace levels of mercury. Appl. Optics, 39, 2480-2486.
-
Dreyer C.B, S. M. Spuler, and M. Linne, 2001: Calibration of Laser Induced Fluorescence of the OH radical by Cavity Ringdown Spectroscopy in Premixed Atmospheric Flames. Combust. Sci. Technol., 171, 163-190.
-
Spuler S. and M. Linne, 2002: Numerical analysis of beam propagation in pulsed cavity ringdown spectroscopy. Appl. Optics, 41, 2858-2868.*
-
Mayor S. and S. M. Spuler, 2004: Raman-shifted Eye-safe Aerosol Lidar. Appl.Optics, 43, 3915-3924.
-
Spuler S. M. and S. Mayor, 2005: Scanning eye-safe elastic backscatter lidar at 1.54 microns. J. Atmos. Oceanic Technol., 22, 696-703
-
Huang X. P, S. M. Spuler and A. D Sappey, 2007: Varied Line-space grating for flat spectral response of coupling to single mode fiber. Appl. Optics, 46, 147-153
-
Mayor S. D., S. M. Spuler, B. Morley, E. Loew, 2007: Polarization lidar at 1.54 um and observations of plumes from aerosol generators. Opt.l Eng., 46, 096201-11
-
Refaat, T. F., S. Ismail, T. L. Mack, M. N. Abedin, S. D. Mayor, S. M. Spuler, 2007: Infrared Phototransistor Validation for Atmospheric Remote Sensing Application using the Raman-Shifted Eye-Safe Aerosol Lidar (REAL). Opt.l Eng., 46, 086001-8.
-
Spuler S. M. and S. D. Mayor, 2007: Raman shifter optimized for lidar at 1.5 microns. Appl. Optics, 46, 2990-2995.
-
Warner T., P. Benda, S. Swerdlin, J. Knievel, E. Argenta, B. Aronian, B. Balsey, J. Bowers, R. Carter, K. Clawson, J. Copeland, A. Crook, R. Frehlich, M. Jensen, Y. Liu, S. Mayor, Y. Meillier, B. Morley, R. Sharman, S. Spuler, D. Storwold, J. Sun, J. Weil, M. Xu, A. Yates, Y. Zhang, 2007: The Pentagon Shield Field Program – Toward Critical Infrastructure Protection. Bull. Amer. Meteor. Soc., 88, 167-176
-
Refaat, T. F., S. Ismail, M. N. Abedin, S. M. Spuler, S. D. Mayor, U. N. Singh, 2008: Lidar backscatter signal recovery from phototransistor systematic effect by deconvolution. Appl. Optics, 47, 5281-5295
-
Spuler, S. M., J. Fugal, 2011: Design of an in-line, digital holographic imaging system for airborne measurement of clouds. Appl. Optics, 50, 1405-1412.
-
Spuler, S. M., D. Richter, M. P. Spowart, and K. Rieken, 2011: Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence. Appl. Optics, 50, 842-851.
-
Lewander, M., A. Fried, P. Weibring, D. Richter, S. Spuler, and L. Rippe, 2011: Fast and sensitive time multiplexed gas sensing of multiple lines using a miniature telecom diode laser between 1529 nm and 1565 nm. Appl. Phys. B, 104(3), 715-723.
-
Patton, E, T. Horst, P. Sullivan, D. Lenschow, S. Oncley, W. Brown, S. Burns, A. Guenther, A. Held, T. Karl, S. Mayor, L. Rizzo, S. Spuler, J. Sun, A. Turnipseed, E. Allwine, S. Edburg, B. Lamb, R. Avissar, R. Calhoun, J. Kleissl, W. Massman, K. Paw, J. Weil, 2011: The Canopy Horizontal Array Turbulence Study. Bull. Amer. Meteor. Soc., 92, 593-611.
-
Hayman, M., S. Spuler, B. Morley, and J. VanAndel, 2012: Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers. Opt. Express, 20, 29553-67.
-
Repasky K.S., D. Moen, S. Spuler, A. R. Nehrir, J. Carlsten, 2013: Progress towards an Autonomous field deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor in the lower troposphere. Remote Sens., 5, 6241-6259.
-
Hayman, M., S. Spuler, and B. Morley, 2014: Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain. Opt. Express, 22, 16976-90.
-
Cooper W. A., S. Spuler, M. Spowart, D. H. Lenschow, and R. B. Friesen, 2014: Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor. Atmos. Meas. Tech., 7, 3215-3231.
-
Richter, D., P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, 2015: Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer. Appl. Phys. B., 1-13. (doi:10.1007/s00340-015-6038-8)
-
Spuler, S. M., Repasky K.S., D. Moen, B. Morley, M. Hayman, A. R. Nehrir, 2015: Field deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmos. Meas. Tech., 8, 1073-1087. (doi:10.5194/amt-8-1073-2015)
-
Beals, M. J., J. P. Fugal, R. A. Shaw, J. Lu, S. M. Spuler, J. L. Stith, 2015: Holographic measurements of inhomogeneous cloud mixing at the centimeter scale. Science, 350 (6256), 87-90 (doi: 10.1126/science.aab075)
-
Mayor, S. P. Derian, C. Mauzey, S. Spuler, P. Ponsardin, J. Pruitt, D.l Ramsey, and Scott Higdon, 2016: Comparison of an analog direct detection and a micropulse aerosol lidar at 1.5µm wavelength for wind field observations – with first results over the ocean. JARS, 10, 016031-1-16. (doi: 10 .1117/1.JRS.10.016031)
-
Weckwerth, T. M., K. Weber, D. D. Turner, S. M. Spuler, 2016: Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL). J. Atmospheric and Oceanic Technology (33) 2353-2372 (doi: 10.1175/JTECH-D-16-0119.1)
-
Hayman, M., and S. Spuler, 2017: Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols. Optics Express, 25(24) A1096 (doi 10.1364/OE.25.0A1096)
-
Bunn C., K. Repasky, M. Hayman, R. Stillwell and S. Spuler, 2018: Perturbative solution to the two component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient, Appl. Opt. 57(16), 4440-4450. (doi: 10.1364/AO.57.004440)
-
Fernando, H., J. Mann, J. Palma, J. Lundquist, R. Barthelmie, M. BeloPereira, W. Brown, F. Chow, T. Gerz, C. Hocut, P. Klein, L. Leo, J. Matos, S. Oncley, S. Pryor, L. Bariteau, T. Bell, N. Bodini, M. Carney, M. Courtney, E. Creegan, R. Dimitrova, S. Gomes, M. Hagen, J. Hyde, S. Kigle, R. Krishnamurthy, J. Lopes, L. Mazzaro, J. Neher, R. Menke, P. Murphy, L. Oswald, S. Otarola-Bustos, A. Pattantyus, C. Rodrigues, A. Schady, N. Sirin, S. Spuler, E. Svensson, J. Tomaszewski, D. Turner, L. van Veen, N. Vasiljevic, D. Vassallo, S. Voss, N. Wildmann, and Y. Wang, 2018: The Perdigão: Peering into Microscale Details of Mountain Winds. Bull. Amer. Meteor. Soc. (doi: 10.1175/BAMS-D-17-0227.1)
-
Hayman M, R. Stillwell, and S.Spuler, 2019: Fast computation of absorption spectra for lidar data processing using principal component analysis. Opt. Lett. 44, 1900-1903 (doi: 10.1364/OL.44.001900)
-
Repasky, K. S., C. E. Bunn, M. Hayman, R. A. Stillwell, and S. M. Spuler, 2019: Modeling the Performance of a Diode Laser-Based (DLB) Micro-Pulse Differential absorption Lidar (MPD) for Temperature Profiling in the Lower Troposphere. Optics Express, 27(23), 33543-33563 (doi: 10.1364/OE.27.033543)
-
Stillwell R. A., S. M. Spuler, M. Hayman, K. S. Repasky and C. E. Bunn, 2020: Demonstration of a Combined Differential Absorption and High Spectral Resolution Lidar for Profiling Atmospheric Temperature. Opt. Express, 28(1), 71–93 (doi: 10.1364/OE.379804)
-
Hayman, M., R. Stillwell, and S. Spuler, 2020: Optimization of linear signal processing in photon counting lidar using Poisson thinning. Optics Letters, 45(18), 5213-5216 (doi: 10.1364/OL.396498)
-
Spuler, S. M., M. Hayman, R. A. Stillwell, J. Carnes, T. Bernatsky, and Repasky, K. S., 2021: MicroPulse DIAL (MPD) – a diode-laser-based lidar architecture for quantitative atmospheric profiling. Atmos. Meas. Tech., 14(6), 4593–4616. (doi: 10.5194/amt-14-4593-2021)
-
Spuler S., M. Hayman, T. M. Weckwerth, 2021: Water Vapor Differential Absorption Lidar, In: Foken T (ed.), Handbook of Atmospheric Measurements. Springer Nature, Switzerland, 741-757. https://doi.org/10.1007/978-3-030-52171-4_26