[69] Wang, T., Li, Z., Ma, Z., Gao, Z. and Tang, G.*, 2023. Diverging identifications of extreme precipitation events from satellite observations and reanalysis products: A global perspective based on an object-tracking method. Remote Sensing of Environment, 288, p.113490.
[68] Tang, G.*, Clark, M. P., & Papalexiou, S. M. (2022). EM-Earth: The Ensemble Meteorological Dataset for Planet Earth. Bulletin of the American Meteorological Society, 103(4), E996-E1018.
[67] Knoben, W.J.M., Clark, M.P., Bales, J., Bennett, A., Gharari, S., Marsh, C.B., Nijssen, B., Pietroniro, A., Spiteri, R.J., Tang, G. and Tarboton, D.G., 2022. Community Workflows to Advance Reproducibility in Hydrologic Modeling: Separating Model‐Agnostic and Model‐Specific Configuration Steps in Applications of Large‐Domain Hydrologic Models. Water Resources Research, 58(11), p.e2021WR031753.
[66] Sun, H., Yao, T., Su, F., He, Z., Tang, G., Li, N., ... & Chen, D. (2022). Corrected ERA5 precipitation by machine learning significantly improved flow simulations for the Third Pole basins. Journal of Hydrometeorology, 23(10), 1663-1679.
[65] Sui, X., Li, Z., Tang, G., Yang, Z. L., & Niyogi, D. (2022). Disentangling error structures of precipitation datasets using decision trees. Remote Sensing of Environment, 280, 113185.
[64] Hobbi, S., Papalexiou, S. M., Rajulapati, C. R., Nerantzaki, S. D., Markonis, Y., Tang, G., & Clark, M. P. (2022). Detailed investigation of discrepancies in Köppen-Geiger climate classification using seven global gridded products. Journal of Hydrology, 612, 128121.
[63] Liu, B., Wan, W., Tang, G., Li, H., Guo, Z., Chen, X., & Hong, Y. (2022). Statistical Analysis of CyGNSS Speckle and Its Applications to Surface Water Mapping. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15.
[62] Xiong, W., Tang, G.*, Wang, T., Ma, Z., & Wan, W. (2022). Evaluation of IMERG and ERA5 Precipitation-Phase Partitioning on the Global Scale. Water, 14(7), 1122.
[61] Xiong, W., Tang, G., & Shen, Y. (2022). Cross-Evaluation of Soil Moisture Based on the Triple Collocation Method and a Preliminary Application of Quality Control for Station Observations in China. Water, 14(7), 1054.
[60] Li, Z., Tang, G., Kirstetter, P., Gao, S., Li, J. L., Wen, Y., & Hong, Y. (2022). Evaluation of GPM IMERG and its constellations in extreme events over the conterminous united states. Journal of Hydrology, 606, 127357.
[59] Zhang, D., Yang, M., Ma, M., Tang, G.*, Wang, T., Zhao, X., ... & Wang, W. (2022). Can GPM IMERG Capture Extreme Precipitation in North China Plain?. Remote Sensing, 14(4), 928.
[58] Lu, X., Chen, Y.*, Tang, G.*, Wang, X., Liu, Y., & Wei, M. (2022). Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging. Journal of Mountain Science, 19(1), 58-72.
[57] Liu, B., Wan, W., Guo, Z., Ji, R., Wang, T., Tang, G., ... & Hong, Y. (2021). First Assessment of CyGNSS-Incorporated SMAP Sea Surface Salinity Retrieval Over Pan-Tropical Ocean. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 12163-12173.
[56] Sun, H., Su, F., Yao, T., He, Z., Tang, G., Huang, J., ... & Chen, D. (2021). General overestimation of ERA5 precipitation in flow simulations for High Mountain Asia basins. Environmental Research Communications, 3(12), 121003.
[55] Wang, C., Tang, G.*, Xiong, W., Ma, Z., Zhu, S. Infrared Precipitation Estimation using Convolutional neural network for FengYun satellites. (2021) Journal of Hydrology. 603, 127113.
[54] Tang, G.*, Clark, M. P., Papalexiou, S. M., Newman, A. J., Wood, A. W., Brunet, D., & Whitfield, P. H. (2021). EMDNA: an Ensemble Meteorological Dataset for North America. Earth System Science Data, 13(7), 3337-3362.
[53] Tang, G.*, Clark, M. P., & Papalexiou, S. M. (2021). SC-Earth: A Station-Based Serially Complete Earth Dataset from 1950 to 2019. Journal of Climate, 34(16), 6493-6511.
[52] Tang, G.*, Clark, M. P., & Papalexiou, S. M. (2021). The Use of Serially Complete Station Data to Improve the Temporal Continuity of Gridded Precipitation and Temperature Estimates. Journal of Hydrometeorology, 22(6), 1553-1568.
[51] Wang, C., Tang, G.*, & Gentine, P. PrecipGAN: Merging Microwave and Infrared Data for Satellite Precipitation Estimation using Generative Adversarial Network. Geophysical Research Letters, 2021, e2020GL092032.
[50] Lu, X., Tang, G.*, Liu, X., Wang, X., Liu, Y., & Wei, M. (2021). The potential and uncertainty of triple collocation in assessing satellite precipitation products in Central Asia. Atmospheric Research, 252, 105452.
[49] Li, Z., Tang, G., Hong, Z., Chen, M., Gao, S., Kirstetter, P., ... & Hong, Y. (2021). Two-decades of GPM IMERG early and final run products intercomparison: Similarity and difference in climatology, rates, and extremes. Journal of Hydrology, 594, 125975.
[48] Hong, Z., Han, Z., Li, X., Long, D., Tang, G., & Wang, J. (2021). Generation of an Improved Precipitation Dataset from Multisource Information over the Tibetan Plateau. Journal of Hydrometeorology, 22(5), 1275-1295.
[47] Clark, M. P., Vogel, R. M., Lamontagne, J. R., Mizukami, N., Knoben, W. J., Tang, G., ... & Papalexiou, S. The abuse of popular performance metrics in hydrologic modeling. Water Resources Research, e2020WR029001.
[46] Zhu, S., Ma, Z., Xu, J., He, K., Liu, H., Ji, Q., Tang G., Hu Hao., Gao, H. (2021). A Morphology-Based Adaptively Spatio-Temporal Merging Algorithm for Optimally Combining Multisource Gridded Precipitation Products With Various Resolutions. IEEE Transactions on Geoscience and Remote Sensing.
[45] Feng, K., Hong, Y., Tian, J., Luo, X., Tang, G., & Kan, G. (2020). Evaluating applicability of multi-source precipitation datasets for runoff simulation of small watersheds: a case study in the United States. European Journal of Remote Sensing, 1-11.
[44] Tang, G.*, Clark, M. P., Newman, A. J., Wood, A. W., Papalexiou, S. M., Vionnet, V., & Whitfield, P. H. (2020). SCDNA: a serially complete precipitation and temperature dataset for North America from 1979 to 2018. Earth System Science Data. 12(4), 2381-2409.
[43] Tang, G.*, Clark, M. P., Papalexiou, S. M., Ma, Z., & Hong, Y. (2020). Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sensing of Environment, 240, 111697.
[42] Tang, G.* (2020). Characterization of the Systematic and Random Errors in Satellite Precipitation Using the Multiplicative Error Model. IEEE Transactions on Geoscience and Remote Sensing.
[41] Wang, T., & Tang, G.* (2020). Spatial Variability and Linkage Between Extreme Convections and Extreme Precipitation Revealed by 22‐Year Space‐Borne Precipitation Radar Data. Geophysical Research Letters, 47(12), e2020GL088437.
[40] Lyu, F., Tang, G.*, Behrangi, A., Wang, T., Tan, X., Ma, Z., & Xiong, W. (2020). Precipitation Merging Based on the Triple Collocation Method Across Mainland China. IEEE Transactions on Geoscience and Remote Sensing.
[39] Wang, C., Xu, J., Tang, G.*, Yang, Y., & Hong, Y. (2020). Infrared Precipitation Estimation Using Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing.
[38] Lu, X., Tang, G.*, Wang, X., Liu, Y., Wei, M., & Zhang, Y. (2020). The Development of a Two-Step Merging and Downscaling Method for Satellite Precipitation Products. Remote Sensing, 12(3), 398.
[37] Ma, Z., Xu, J., Zhu, S., Yang, J., Tang, G., Yang, Y., ... & Hong, Y. (2020). AIMERG: a new Asian precipitation dataset (0.1°/half-hourly, 2000–2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE. Earth System Science Data, 12(3), 1525-1544.
[36] Li, H., Zhong, X., Ma, Z., Tang, G., Ding, L., Sui, X., ... & He, Y. (2020). Climate Changes and Their Teleconnections With ENSO Over the Last 55 Years, 1961–2015, in Floods‐Dominated Basin, Jiangxi Province, China. Earth and Space Science, 7(3), e2019EA001047.
[35] Ma, M., Wang, H., Jia, P., Tang, G., Wang, D., Ma, Z., & Yan, H. (2020). Application of the GPM-IMERG Products in Flash Flood Warning: A Case Study in Yunnan, China. Remote Sensing, 12(12), 1954.
[34] Li, Z., Chen, M., Gao, S., Hong, Z., Tang, G., Wen, Y., ... & Hong, Y. (2020). Cross-Examination of Similarity, Difference and Deficiency of Gauge, Radar and Satellite Precipitation Measuring Uncertainties for Extreme Events Using Conventional Metrics and Multiplicative Triple Collocation. Remote Sensing, 12(8), 1258.
[33] Rajulapati, C. R., Papalexiou, S. M., Clark, M. P., Razavi, S., Tang, G., & Pomeroy, J. W. (2020). Assessment of extremes in global precipitation products: How reliable are they? Journal of Hydrometeorology, 21(12), 2855-2873.
[32] Ma, M., Wang, H., Yang, Y., Zhao, G., Tang, G., Hong, Z., ... & Hong, Y. (2020). Development of a new rainfall‐triggering index of flash flood warning‐case study in Yunnan province, China. Journal of Flood Risk Management, e12676.
[31] Sun, A. Y., & Tang, G. (2020). Downscaling Satellite and Reanalysis Precipitation Products Using Attention-Based Deep Convolutional Neural Nets. Front. Water 2: 536743. doi: 10.3389/frwa.
[30] Xu, J., Ma, Z., Tang, G., Ji, Q., Min, X., Wan, W., & Shi, Z. (2019). Quantitative evaluations and error source analysis of Fengyun-2-based and GPM-based precipitation products over mainland China in summer, 2018. Remote Sensing, 11(24), 2992.
[29] Lu, X., Tang, G.*, Wang, X., Liu, Y., Jia, L., Xie, G., ... & Zhang, Y. (2019). Correcting GPM IMERG precipitation data over the Tianshan Mountains in China. Journal of Hydrology, 575, 1239-1252.
[28] Tang, G., Long, D., Hong, Y., Gao, J., and Wan, W. (2018), Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars, Remote Sensing of Environment, 208, 82-96.
[27] Tang, G., Behrangi, A., Long, D., Li, C., Hong, Y. (2018), Exploring deep neural networks to retrieve rain and snow in high latitudes using multi-sensor and reanalysis data. Water Resources Research, 2018, 54(10): 8253-8278.
[26] Tang, G., Behrangi, A., Ma, Z., Long, D., Hong, Yang. (2018), Downscaling of ERA-Interim temperature in the Contiguous United States and its implications for rain-snow partitioning, Journal of Hydrometeorology. 19(7), 1215-1233.
[25] Tang, G., Behrangi, A., Long, D., Li, C., and Hong, Y. (2018), Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products, Journal of Hydrology, 559, 294-306.
[24] Wang, C., Tang, G., Han, Z., Guo, X. and Hong, Y., (2018), Global Intercomparison and Regional Evaluation of GPM IMERG Version-03, Version-04 and its latest Version-05 Precipitation Products: Similarity, Difference and Improvements, Journal of Hydrology. 564, 342-356.
[23] Chen, C., Chen, Q., Duan, Z., Zhang, J., Mo, K., Li, Z., and Tang, G. (2018), Multiscale Comparative Evaluation of the GPM IMERG v5 and TRMM 3B42 v7 Precipitation Products from 2015 to 2017 over a Climate Transition Area of China, Remote Sensing, 10(6), 944.
[22] Li, C., Tang, G.*, and Hong, Y.* (2018), Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the Triple Collocation method across Mainland China, Journal of Hydrology, 562, 71-83.
[21] Lu, X., Tang, G., Wei, M., Yang, L., and Zhang, Y. (2018), Evaluation of multi-satellite precipitation products in Xinjiang, China, International Journal of Remote Sensing, 1-26.
[20] Lu, X., Wei, M.*, Tang, G.*, and Zhang, Y. (2018), Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China, Environmental Earth Sciences, 77(5).
[19] Ma, Y., Hong, Y., Chen, Y., Yang, Y., Tang, G., Yao, Y., Long, D., Li, C., Han, Z., and Liu, R. (2018), Performance of Optimally Merged Multisatellite Precipitation Products Using the Dynamic Bayesian Model Averaging Scheme Over the Tibetan Plateau, Journal of Geophysical Research: Atmospheres, 123(2), 814-834.
[18] Ma, Y., Yang, Y., Han, Z., Tang, G., Maguire, L., Chu, Z., and Hong, Y. (2018), Comprehensive evaluation of Ensemble Multi-Satellite Precipitation Dataset using the Dynamic Bayesian Model Averaging scheme over the Tibetan plateau, Journal of Hydrology, 556, 634-644.
[17] Gao, J., Tang, G., and Hong, Y. (2017), Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling, Remote Sensing, 9(11), 1142.
[16] Tang, G., Wen, Y., Gao, J., Long, D., Ma, Y., Wan, W., and Hong, Y. (2017), Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation, Water Resources Research, 53(5), 3835-3853.
[15] Tang, G., Zeng, Z., Ma, M., Liu, R., Wen, Y., and Hong, Y. (2017), Can Near-Real-Time Satellite Precipitation Products Capture Rainstorms and Guide Flood Warning for the 2016 Summer in South China?, IEEE Geoscience and Remote Sensing Letters, 14(8), 1208-1212.
[14] Kan, G., Tang, G., Yang, Y., Hong, Y., et al. (2017), An Improved Coupled Routing and Excess Storage (CREST) Distributed Hydrological Model and Its Verification in Ganjiang River Basin, China. Water, 9.
[13] Li, N., Tang, G., Zhao, P., Hong, Y., Gou, Y., and Yang, K. (2017), Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin, Atmospheric Research, 183, 212-223.
[12] Yang, Y., Tang, G., Lei, X., Hong, Y., and Yang, N. (2017), Can Satellite Precipitation Products Estimate Probable Maximum Precipitation: A Comparative Investigation with Gauge Data in the Dadu River Basin, Remote Sensing, 10(1), 41.
[11] Zeng, Z., Tang, G.*, Hong, Y.*, Zeng, C., and Yang, Y. (2017), Development of an NRCS curve number global dataset using the latest geospatial remote sensing data for worldwide hydrologic applications, Remote Sensing Letters, 8(6), 528-536.
[10] Gao, Z., Long, D., Tang, G., Zeng, C., Huang, J., and Hong, Y. (2017), Assessing the potential of satellite-based precipitation estimates for flood frequency analysis in ungauged or poorly gauged tributaries of China’s Yangtze River basin, Journal of Hydrology, 550, 478-496.
[9] Zhong, L., Yang, R., Chen, L., Wen, Y., Li, R., Tang, G., and Hong, Y. (2017), Combined Space and Ground Radars for Improving Quantitative Precipitation Estimations in the Eastern Downstream Region of the Tibetan Plateau. Part I: Variability in the Vertical Structure of Precipitation in ChuanYu Analyzed from Long-Term Spaceborne Observations by TRMM PR, Journal of Applied Meteorology and Climatology, 56(8), 2259-2274.
[8] Tang, G., Long, D., and Hong, Y. (2016), Systematic Anomalies Over Inland Water Bodies of High Mountain Asia in TRMM Precipitation Estimates: No Longer a Problem for the GPM Era?, IEEE Geoscience and Remote Sensing Letters, 13(12), 1762-1766.
[7] Tang, G., Ma, Y., Long, D., Zhong, L., and Hong, Y. (2016), Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales, Journal of Hydrology, 533, 152-167.
[6] Tang, G., Zeng, Z., Long, D., Guo, X., Yong, B., Zhang, W., and Hong, Y. (2016), Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7?, Journal of Hydrometeorology, 17(1), 121-137.
[5] Ma, Y., Tang, G., Long, D., Yong, B., Zhong, L., Wan, W., and Hong, Y. (2016), Similarity and Error Intercomparison of the GPM and Its Predecessor-TRMM Multisatellite Precipitation Analysis Using the Best Available Hourly Gauge Network over the Tibetan Plateau, Remote Sensing, 8(7), 569.
[4] Zeng, Z., Tang, G., Long, D., Zeng, C., Ma, M., Hong, Y., Xu, H., and Xu, J. (2016), A cascading flash flood guidance system: development and application in Yunnan Province, China, Natural Hazards, 84(3), 2071-2093.
[3] Zhang, Y., Hong, Y., Wang, X., Gourley, J. J., Xue, X., Saharia, M., Ni, G., Wang, G., Huang, Y., Chen, S., and Tang, G. (2015), Hydrometeorological Analysis and Remote Sensing of Extremes: Was the July 2012 Beijing Flood Event Detectable and Predictable by Global Satellite Observing and Global Weather Modeling Systems?, Journal of Hydrometeorology, 16(1), 381-395.
[2] Chen, S., Liu, H., You, Y., Mullens, E., Hu, J., Yuan, Y., Huang, M., He, L., Luo, Y., Zeng, X., Tang, G., and Hong, Y. (2014), Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations, PLoS One, 9(4), e89681.
[1] Wan, Z., Hong, Y., Khan, S., Gourley, J., Flamig, Z., Kirschbaum, D., and Tang, G. (2014), A cloud-based global flood disaster community cyber-infrastructure: Development and demonstration, Environmental Modelling & Software, 58, 86-94.