Does increased horizontal resolution Improve hurricane wind forecasts?

AMS Citation:
Davis, C. A., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution Improve hurricane wind forecasts? Weather and Forecasting, 25, 1826-1841, doi:10.1175/2010WAF2222423.1.
Date:2010-12-01
Resource Type:article
Title:Does increased horizontal resolution Improve hurricane wind forecasts?
Abstract: The representation of tropical cyclone track, intensity, and structure in a set of 69 parallel forecasts performed at each of two horizontal grid increments with the Advanced Research Hurricane(AHW) component of the Weather and Research and Forecasting Model (WRF) is evaluated. These forecasts covered 10 Atlantic tropical cyclones: 6 from the 2005 season and 4 from 2007. The forecasts were integrated from identical initial conditions produced by a cycling ensemble Kalman filter. The high-resolution forecasts used moving, storm-centered nests of 4- and 1.33-km grid spacing. The coarse-resolution forecasts consisted of a single 12-km domain (which was identical to the outer domain in the forecasts with nests). Forecasts were evaluated out to 120 h. Novel verification techniques were developed to evaluate forecasts of wind radii and the degree of storm asymmetry. Intensity (maximum wind) and rapid intensification, as well as wind radii, were all predicted more accurately with increased horizontal resolution. These results were deemed to be statistically significant based on the application of bootstrap confidence intervals. No statistically significant differences emerged regarding storm position errors between the two forecasts. Coarse-resolution forecasts tended to overpredict the extent of winds compared to high-resolution forecasts. The asymmetry of gale-force winds was better predicted in the coarser-resolution simulation, but asymmetry of hurricane-force winds was predicted better at high resolution. The skill of the wind radii forecasts decayed gradually over 120 h, suggesting a synoptic-scale control of the predictability of outer winds.
Peer Review:Refereed
Copyright Information:Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
OpenSky citable URL: ark:/85065/d7rb755c
Publisher's Version: 10.1175/2010WAF2222423.1
Author(s):
  • Christopher Davis - NCAR/UCAR
  • Wei Wang - NCAR/UCAR
  • Jimy Dudhia - NCAR/UCAR
  • Ryan Torn
  • Random Profile

    POSTDOC RESEARCHER

    Recent & Upcoming Visitors